We introduce a flexible framework that produces high-quality almost-exact matches for causal inference. Most prior work in matching uses ad-hoc distance metrics, often leading to poor quality matches, particularly when there are irrelevant covariates. In this work, we learn an interpretable distance metric for matching, which leads to substantially higher quality matches. The learned distance metric stretches the covariate space according to each covariate's contribution to outcome prediction: this stretching means that mismatches on important covariates carry a larger penalty than mismatches on irrelevant covariates. Our ability to learn flexible distance metrics leads to matches that are interpretable and useful for the estimation of conditional average treatment effects.
翻译:我们引入了一个灵活的框架, 产生高质量的几乎符合因果关系推断结果的近似精确的匹配。 大多数先前在匹配使用特殊距离测量标准方面的工作, 常常导致质量匹配差, 特别是当存在不相关的共差时。 在这项工作中, 我们学习了一种可解释的相匹配距离测量标准, 从而导致质量匹配大大提高。 学习的距离测量根据每个共差对结果预测的贡献, 将共差空间拉长: 这种拉长意味着重要共差的不匹配比不相关的共差的处罚大。 我们学习灵活距离测量的能力导致可以解释的匹配, 并且对估计有条件平均治疗效果有用 。