This paper studies the problem of federated learning (FL) in the absence of a trustworthy server/clients. In this setting, each client needs to ensure the privacy of its own data without relying on the server or other clients. We study local differential privacy (LDP) at the client level and provide tight upper and lower bounds that establish the minimax optimal rates (up to logarithms) for LDP convex/strongly convex federated stochastic optimization. Our rates match the optimal statistical rates in certain practical parameter regimes ("privacy for free"). Second, we develop an accelerated distributed noisy SGD algorithm, leading to the first non-trivial LDP risk bounds for FL with non-i.i.d. clients. Third, we consider the special case where each client's loss function is empirical and use a variation of our accelerated LDP FL algorithm to improve communication complexity compared to existing works. We also provide matching lower bounds, establishing the optimality of our algorithm for convex/strongly convex settings. Fourth, with a secure shuffler to anonymize client reports (but without a trusted server), our algorithm attains the optimal central DP rates for stochastic convex/strongly convex optimization, thereby achieving optimality in the local and central models simultaneously. Our upper bounds quantify the role of network communication reliability in performance.
翻译:本文研究在缺少可靠的服务器/客户端情况下的联结学习(FL)问题。 在这种环境下,每个客户都需要在不依赖服务器或其他客户的情况下,确保自己数据的隐私。 我们研究客户一级的本地差异隐私(LDP),并提供严格的上下限,以建立LDP convex/强调的联结式随机优化的最小最大最佳比率(直到对数),我们的比率符合某些实际参数系统中的最佳统计比率("免费隐私")。 其次,我们开发一个快速分布的噪音 SGD 算法,导致首次非三联LDP与非i.i.d.客户的FLDP风险圈。 第三,我们考虑一个特殊案例,即每个客户的损失功能是实验性的,并使用我们加速的LDP FL算法的变异性来提高通信复杂性。 我们还提供更低的比对接线,确定我们配置/强调调调调调调的逻辑的最佳性。 第四,以安全的震动式的SGDGD算法为我们最优化的客户端端端端端端的客户端端报告,从而实现我们最佳的客户端端端端端端端端端端的客户端的客户端端端报告。