Cartesian differential categories are categories equipped with a differential combinator which axiomatizes the directional derivative. Important models of Cartesian differential categories include classical differential calculus of smooth functions and categorical models of the differential $\lambda$-calculus. However, Cartesian differential categories cannot account for other interesting notions of differentiation of a more discrete nature such as the calculus of finite differences. On the other hand, change action models have been shown to capture these examples as well as more ``exotic'' examples of differentiation. But change action models are very general and do not share the nice properties of Cartesian differential categories. In this paper, we introduce Cartesian difference categories as a bridge between Cartesian differential categories and change action models. We show that every Cartesian differential category is a Cartesian difference category, and how certain well-behaved change action models are Cartesian difference categories. In particular, Cartesian difference categories model both the differential calculus of smooth functions and the calculus of finite differences. Furthermore, every Cartesian difference category comes equipped with a tangent bundle monad whose Kleisli category is again a Cartesian difference category.
翻译:笛卡尔差分类别是配有不同组合的类别, 使方向衍生物具有分解性。 笛卡尔差分类别的重要模式包括光滑功能的典型差异微分分分数, 以及差价 $\lambda$- calculus 的绝对模型。 但是, 笛卡尔差分类别无法解释其他更离散性质差异的有趣概念, 如有限差异的微分。 另一方面, 已经展示了变化行动模型, 以捕捉这些例子以及更多的“ exexic' ” 差异示例。 但是, 变化行动模型非常笼统, 不分享笛卡尔的差分类别。 在本文中, 我们引入了笛卡尔的差分类别, 作为笛卡尔的差分类别和变化行动模型之间的桥梁。 我们显示, 每一个笛卡尔的差分类别都属于笛卡尔的差分类别, 以及某些稳妥的改变行动模型是笛卡尔的差分类别。 特别是, 笛卡尔的差数类别既包括平滑功能的差分等的微分等, 也包含有限差异的微差别的微分数类别。 此外, 每个笛卡尔的差类别都配有金的差类别。