A density matrix describes the statistical state of a quantum system. It is a powerful formalism to represent both the quantum and classical uncertainty of quantum systems and to express different statistical operations such as measurement, system combination and expectations as linear algebra operations. This paper explores how density matrices can be used as a building block to build machine learning models exploiting their ability to straightforwardly combine linear algebra and probability. One of the main results of the paper is to show that density matrices coupled with random Fourier features could approximate arbitrary probability distributions over $\mathbb{R}^n$. Based on this finding the paper builds different models for density estimation, classification and regression. These models are differentiable, so it is possible to integrate them with other differentiable components, such as deep learning architectures and to learn their parameters using gradient-based optimization. In addition, the paper presents optimization-less training strategies based on estimation and model averaging. The models are evaluated in benchmark tasks and the results are reported and discussed.
翻译:密度矩阵描述量子系统的统计状态。 它是一种强大的形式主义,既代表量子系统的量子和传统不确定性,又表示不同的统计操作,如测量、系统组合和线性代数操作等期望等。本文探讨了如何将密度矩阵作为构建机器学习模型的构件,利用它们直接结合线性代数和概率的能力来建立机器学习模型。本文的主要结果之一是显示密度矩阵加上随机的Fourier特征可以近似任意概率分布在$\mathbb{R ⁇ n$之上。基于这一发现,本文为密度估计、分类和回归构建了不同的模型。这些模型是不同的,因此可以将其与其他不同的组成部分整合,例如深层学习结构,并利用梯度优化来学习参数。此外,本文还介绍了基于估计和平均模型的无优化培训战略。根据基准任务对模型进行了评估,并报告并讨论了结果。