Collaborative edge computing (CEC) is an emerging paradigm where heterogeneous edge devices (stakeholders) collaborate to fulfill computation tasks, such as model training or video processing, by sharing communication and computation resources. Nevertheless, the optimal data/result routing and computation offloading strategy in CEC with arbitrary topology still remains an open problem. In this paper, we formulate a partial-offloading and multi-hop routing model for arbitrarily divisible tasks. Each node individually decides the computation of the received data and the forwarding of data/result traffic. In contrast to most existing works, our model applies to tasks with non-negligible result size, and enables separable data sources and result destinations. We propose a network-wide cost minimization problem with congestion-aware cost to jointly optimize routing and computation offloading. This problem covers various performance metrics and constraints, such as average queueing delay with limited processor capacity. Although the problem is non-convex, we provide non-trivial necessary and sufficient conditions for the global-optimal solution, and devise a fully distributed algorithm that converges to the optimum in polynomial time, allows asynchronous individual updating, and is adaptive to changes in network topology or task pattern. Numerical evaluation shows that our proposed method significantly outperforms other baseline algorithms in multiple network instances, especially in congested scenarios.
翻译:合作边缘计算(CEC)是一个新兴范例,不同边缘设备(利益攸关方)通过共享通信和计算资源,合作完成计算任务,例如模型培训或视频处理,共享通信和计算资源;然而,在CEC中,使用任意地形的优化数据/结果路由和计算卸载战略仍是一个尚未解决的问题。在本文件中,我们为任意可分化的任务制定了部分卸载和多速路由模式。每个节点都单独决定所接收数据的计算和数据/结果传输。与大多数现有工作不同,我们的模型适用于具有不可忽略的结果大小的任务,并且能够使数据源和结果目的地相互分离。我们提出了一个全网络成本最小化问题,以通缩算成本联合优化路由和计算卸载。这个问题包括各种性能衡量和制约,如平均排队延迟,而处理能力有限。尽管问题不是convex,但我们为全球最佳解决方案提供了不必要和充分的条件,我们设计了一个完全分布的算法,可以与多元网络的最佳调整模式或顶级模型相比,我们提出的顶级的模型可以显示我们最高级的模型。