Aerial manipulators (AM) exhibit particularly challenging, non-linear dynamics; the UAV and the manipulator it is carrying form a tightly coupled dynamic system, mutually impacting each other. The mathematical model describing these dynamics forms the core of many solutions in non-linear control and deep reinforcement learning. Traditionally, the formulation of the dynamics involves Euler angle parametrization in the Lagrangian framework or quaternion parametrization in the Newton-Euler framework. The former has the disadvantage of giving birth to singularities and the latter being algorithmically complex. This work presents a hybrid solution, combining the benefits of both, namely a quaternion approach leveraging the Lagrangian framework, connecting the singularity-free parameterization with the algorithmic simplicity of the Lagrangian approach. We do so by offering detailed insights into the kinematic modeling process and the formulation of the dynamics of a general aerial manipulator. The obtained dynamics model is validated experimentally against a real-time physics engine. A practical application of the obtained dynamics model is shown in the context of a computed torque feedback controller (feedback linearization), where we analyze its real-time capability with increasingly complex models.
翻译:航空操纵者(AM)展示了特别具有挑战性的非线性动态;无人机及其操作者携带着一种紧密结合的动态系统,相互影响。描述这些动态的数学模型构成了非线性控制和深加学习中许多解决方案的核心。传统上,动态的形成涉及拉格朗江框架或牛顿-尤尔框架的四角对齐化,或牛顿-尤尔框架的四角对齐化。前者的缺点是产生奇点,后者在算法上是复杂的。这项工作提出了一种混合解决办法,将两者的惠益结合起来,即利用拉格朗江框架的四面法方法,将无奇点参数化与拉格朗江方法的算法简单性联系起来。我们这样做的方式是,对动态模型进程提供详细见解,对一般航空操纵器的动态进行构思。获得的动态模型对实时物理学引擎进行实验性验证。获得的动态模型的实际应用是在一个计算到的轨反反馈控制器(后向线性化)背景下展示的,我们越来越多地分析其真实能力。