Deciding whether a given function is quasiconvex is generally a difficult task. Here, we discuss a number of numerical approaches that can be used in the search for a counterexample to the quasiconvexity of a given function $W$. We will demonstrate these methods using the planar isotropic rank-one convex function \[ W_{\rm magic}^+(F)=\frac{\lambda_{\rm max}}{\lambda_{\rm min}}-\log\frac{\lambda_{\rm max}}{\lambda_{\rm min}}+\log\det F=\frac{\lambda_{\rm max}}{\lambda_{\rm min}}+2\log\lambda_{\rm min}\,, \] where $\lambda_{\rm max}\geq\lambda_{\rm min}$ are the singular values of $F$, as our main example. In a previous contribution, we have shown that quasiconvexity of this function would imply quasiconvexity for all rank-one convex isotropic planar energies $W:\operatorname{GL}^+(2)\rightarrow\mathbb{R}$ with an additive volumetric-isochoric split of the form \[ W(F)=W_{\rm iso}(F)+W_{\rm vol}(\det F)=\widetilde W_{\rm iso}\bigg(\frac{F}{\sqrt{\det F}}\bigg)+W_{\rm vol}(\det F) \] with a concave volumetric part. This example is therefore of particular interest with regard to Morrey's open question whether or not rank-one convexity implies quasiconvexity in the planar case.
翻译:确定给定函数是否为 准 convex 通常是一项困难的任务 。 在这里, 我们讨论一些数字方法, 可以用来查找给定函数的准 convexpolation $W$。 我们将用 Planar 等离子正弦正弦正弦函数来演示这些方法 \ [W\rm magic\ (F)\\frac\ llambda ⁇ rm min\\\\ log\ lambl\\ rm maxl\ lambl\ macl\ macl\\ lambda\rm\ min macrt\\\ lafrel\\\ labrd\ mar\\\ lambr\ rda} maxl= florma_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ad p p preal pal pal palPreal le pal pal le pal modeal modeal modeal modeal modeal modeal le le modeal modeal modeal le le le le le le modeal le le le le le le ex ex ex ex fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fl_ fli_ f_ fli_ fl_ fl_ fl_ fl_ fl_ fl_ fli_ fli_ fli_ f