This paper analyzes the impact of higher-order inference (HOI) on the task of coreference resolution. HOI has been adapted by almost all recent coreference resolution models without taking much investigation on its true effectiveness over representation learning. To make a comprehensive analysis, we implement an end-to-end coreference system as well as four HOI approaches, attended antecedent, entity equalization, span clustering, and cluster merging, where the latter two are our original methods. We find that given a high-performing encoder such as SpanBERT, the impact of HOI is negative to marginal, providing a new perspective of HOI to this task. Our best model using cluster merging shows the Avg-F1 of 80.2 on the CoNLL 2012 shared task dataset in English.
翻译:本文分析了更高等级的推断(HOI)对共同参照决议任务的影响。 HOI几乎所有最近的共同参照解决模式都进行了调整,而没有对其在代表性学习方面的真实效力进行大量调查。为了进行全面分析,我们实施了端对端共同参照系统以及四种HOI方法,参加了前代、实体均衡、跨集群和集群合并,而后两种方法都是我们最初采用的方法。我们发现,鉴于SpanBERT等高性能的编码器,HOI的影响对边际是负面的,为HOI的任务提供了新的视角。我们利用集群合并的最佳模型显示了2012年CONLL共享任务数据集的80.2的Avg-F1。