In this paper, we propose a point cloud classification method based on graph neural network and manifold learning. Different from the conventional point cloud analysis methods, this paper uses manifold learning algorithms to embed point cloud features for better considering the geometric continuity on the surface. Then, the nature of point cloud can be acquired in low dimensional space, and after being concatenated with features in the original three-dimensional (3D)space, both the capability of feature representation and the classification network performance can be improved. We pro-pose two manifold learning modules, where one is based on locally linear embedding algorithm, and the other is a non-linear projection method based on neural network architecture. Both of them can obtain better performances than the state-of-the-art baseline. Afterwards, the graph model is constructed by using the k nearest neighbors algorithm, where the edge features are effectively aggregated for the implementation of point cloud classification. Experiments show that the proposed point cloud classification methods obtain the mean class accuracy (mA) of 90.2% and the overall accuracy (oA)of 93.2%, which reach competitive performances compared with the existing state-of-the-art related methods.


翻译:在本文中, 我们提出基于图形神经网络和多重学习的点云分类方法。 与常规点云分析方法不同, 本文使用多重学习算法, 嵌入点云特性, 以更好地考虑到表面的几何连续性。 然后, 点云的性质可以在低维空间中获得, 在与原始三维( 3D) 空间的特征融合后, 地貌表现能力和分类网络性能都可以提高。 我们提出两个多重学习模块, 其中一个基于本地线性嵌入算法, 另一套基于神经网络结构的非线性投影方法。 两者都能够取得比最新基线更好的性能。 之后, 图形模型是使用千近邻的算法构建的, 其边缘性能被有效地汇总用于点云分类。 实验显示, 拟议的点云分类方法获得了90.2% 的平均级精度和93.2%的总体精度( oA), 与现有的状态相关方法相比, 达到竞争性性性性性。

0
下载
关闭预览

相关内容

流形学习,全称流形学习方法(Manifold Learning),自2000年在著名的科学杂志《Science》被首次提出以来,已成为信息科学领域的研究热点。在理论和应用上,流形学习方法都具有重要的研究意义。假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化。它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律。
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
102+阅读 · 2020年7月16日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
58+阅读 · 2019年11月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员