Although the advances of self-supervised blind denoising are significantly superior to conventional approaches without clean supervision in synthetic noise scenarios, it shows poor quality in real-world images due to spatially correlated noise corruption. Recently, pixel-shuffle downsampling (PD) has been proposed to eliminate the spatial correlation of noise. A study combining a blind spot network (BSN) and asymmetric PD (AP) successfully demonstrated that self-supervised blind denoising is applicable to real-world noisy images. However, PD-based inference may degrade texture details in the testing phase because high-frequency details (e.g., edges) are destroyed in the downsampled images. To avoid such an issue, we propose self-residual learning without the PD process to maintain texture information. We also propose an order-variant PD constraint, noise prior loss, and an efficient inference scheme (progressive random-replacing refinement ($\text{PR}^3$)) to boost overall performance. The results of extensive experiments show that the proposed method outperforms state-of-the-art self-supervised blind denoising approaches, including several supervised learning methods, in terms of PSNR, SSIM, LPIPS, and DISTS in real-world sRGB images.


翻译:虽然自我监督的盲目除尘技术的进展在合成噪音情景中大大优于没有清洁监督的常规方法,但由于与空间有关的噪音腐败,它表明真实世界图像的质量差。最近,建议消除噪音的空间相关性。一项将盲点网络(BSN)和不对称PD(AP)相结合的研究成功证明,自我监督的盲点除污技术适用于真实世界的噪音图像。然而,基于PD的推断可能降低测试阶段的纹理细节,因为高频细节(例如边缘)在降色图像中被销毁。为了避免出现这样的问题,我们提议在PD程序之外进行自我恢复学习,以保持纹理信息。我们还提议了一个命令变量PD约束、先前的噪音损失,以及一个高效的推断计划(不断随机改进(($\text{PR ⁇ 3$)),以提高总体性能。广泛的实验结果表明,拟议的方法超越了低频层图像(例如边缘),我们建议不使用PDRPS-PS的州-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SI-S-S-S-SISIS-SIS-SIS-IIS-S-S-IIS-S-S-S-S-S-S-S-S-S-SIS-SIS-SIS-S-S-SIS-S-S-SIS-SIS-SIS-SIS-SIS-S-S-S-S-S-S-S-SIS-SIS-SIS-SIS-S-SIS-S-SIS-S-S-SIS-SIS-S-SIS-S-SIS-S-S-SIS-S-S-S-S-SIS-S-S-S-S-S-S-S-S-S-S-S-S-S-SIS-S-S-SIS-SIS-SIS-SIS-SIS-SIS-SIS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月11日
Arxiv
0+阅读 · 2023年4月9日
Arxiv
0+阅读 · 2023年4月8日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员