The optimal transport (OT) problem has been used widely for machine learning. It is necessary for computation of an OT problem to solve linear programming with tight mass-conservation constraints. These constraints prevent its application to large-scale problems. To address this issue, loosening such constraints enables us to propose the relaxed-OT method using a faster algorithm. This approach has demonstrated its effectiveness for applications. However, it remains slow. As a superior alternative, we propose a fast block-coordinate Frank-Wolfe (BCFW) algorithm for a convex semi-relaxed OT. Specifically, we prove their upper bounds of the worst convergence iterations, and equivalence between the linearization duality gap and the Lagrangian duality gap. Additionally, we develop two fast variants of the proposed BCFW. Numerical experiments have demonstrated that our proposed algorithms are effective for color transfer and surpass state-of-the-art algorithms. This report presents a short version of arXiv:2103.05857.
翻译:最佳运输(OT)问题被广泛用于机器学习。 计算一个OT问题对于解决线性编程问题是必要的, 并须有严格的质量保护限制。 这些限制使得无法将它应用于大规模问题。 为了解决这个问题, 放松这种限制使我们能够提出使用更快算法的放松- OT方法。 这种方法已经证明了它在应用中的有效性。 但是, 仍然缓慢。 作为优选方案, 我们提议了一个快速的组合坐标 Frank- Wolfe (BCFW) 算法, 用于连接半放松的 OT 。 具体地说, 我们证明了它们最差的趋同性交错的上限, 以及线性双重化差距和拉格朗双性差距之间的等值。 此外, 我们开发了拟议的 BCFW 的两种快速变体。 数值实验表明, 我们提议的算法对于色转移有效, 超过了最先进的算法。 这份报告提供了一种短版本的arXiv: 2103.05857。