Clinical evidence encompasses the associations and impacts between patients, interventions (such as drugs or physiotherapy), problems, and outcomes. The goal of recommending clinical evidence is to provide medical practitioners with relevant information to support their decision-making processes and to generate new evidence. Our specific task focuses on recommending evidence based on clinical problems. However, the direct connections between certain clinical problems and related evidence are often sparse, creating a challenge of link sparsity. Additionally, to recommend appropriate evidence, it is essential to jointly exploit both topological relationships among evidence and textual information describing them. To address these challenges, we define two knowledge graphs: an Evidence Co-reference Graph and an Evidence Text Graph, to represent the topological and linguistic relations among evidential elements, respectively. We also introduce a multi-channel heterogeneous learning model and a fusional attention mechanism to handle the co-reference-text heterogeneity in evidence recommendation. Our experiments demonstrate that our model outperforms state-of-the-art methods on open data.


翻译:临床证据包括患者、干预措施(如药物或物理疗法)、问题和结果之间的关联和影响。推荐临床证据的目标是为医疗从业者提供相关信息,支持他们的决策过程并产生新的证据。我们的具体任务聚焦于基于临床问题的推荐临床证据。然而,特定临床问题与相关证据之间的直接联系通常很少,从而创建了链接稀疏性的挑战。此外,要推荐适当的证据,必须同时利用证据之间的拓扑关系和描述它们的文本信息。为了解决这些挑战,我们定义了两个知识图谱:证据共参考图和证据文本图,以分别表示证据元素之间的拓扑和语言关系。我们还引入了一个多通道异构学习模型和融合注意机制,以处理证据推荐中的共参考-文本异构性。我们的实验表明,我们的模型在开放数据上的性能优于现有方法。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
22+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
101+阅读 · 2020年3月4日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
20+阅读 · 2019年11月23日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
相关论文
相关基金
国家自然科学基金
22+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员