We first revisit the problem of estimating the spot volatility of an It\^o semimartingale using a kernel estimator. We prove a Central Limit Theorem with optimal convergence rate for a general two-sided kernel. Next, we introduce a new pre-averaging/kernel estimator for spot volatility to handle the microstructure noise of ultra high-frequency observations. We prove a Central Limit Theorem for the estimation error with an optimal rate and study the optimal selection of the bandwidth and kernel functions. We show that the pre-averaging/kernel estimator's asymptotic variance is minimal for exponential kernels, hence, justifying the need of working with kernels of unbounded support as proposed in this work. We also develop a feasible implementation of the proposed estimators with optimal bandwidth. Monte Carlo experiments confirm the superior performance of the devised method.
翻译:我们首先重新审视使用内核测深器估计It ⁇ o半成像的点波动问题。 我们证明我们是一个中央限制理论,对一般的双向内核而言,它具有最佳的趋同率。 其次,我们引入一个新的预保护/内核测深器,用于处理超高频观测的微结构噪音。我们用最佳速率来证明一个用于估计误差的中央限制理论,并研究最佳选择带宽和内核功能的方法。我们证明,预保护/内核测深器的零弹道差异对指数内核来说是最小的,因此证明有必要按照这项工作中的建议与无限制支助的内核合作。我们还开发了使用最佳带宽的拟议测深器的可行性。 Monte Carlo实验证实了设计方法的优异性表现。