Dynamic Time Warping (DTW) is a widely used similarity measure for comparing strings that encode time series data, with applications to areas including bioinformatics, signature verification, and speech recognition. The standard dynamic-programming algorithm for DTW takes $O(n^2)$ time, and there are conditional lower bounds showing that no algorithm can do substantially better. In many applications, however, the strings $x$ and $y$ may contain long runs of repeated letters, meaning that they can be compressed using run-length encoding. A natural question is whether the DTW-distance between these compressed strings can be computed efficiently in terms of the lengths $k$ and $\ell$ of the compressed strings. Recent work has shown how to achieve $O(k\ell^2 + \ell k^2)$ time, leaving open the question of whether a near-quadratic $\tilde{O}(k\ell)$-time algorithm might exist. We show that, if a small approximation loss is permitted, then a near-quadratic time algorithm is indeed possible: our algorithm computes a $(1 + \epsilon)$-approximation for $DTW(x, y)$ in $\tilde{O}(k\ell / \epsilon^3)$ time, where $k$ and $\ell$ are the number of runs in $x$ and $y$. Our algorithm allows for $DTW$ to be computed over any metric space $(\Sigma, \delta)$ in which distances are $O(log(n))$-bit integers. Surprisingly, the algorithm also works even if $\delta$ does not induce a metric space on $\Sigma$ (e.g., $\delta$ need not satisfy the triangle inequality).


翻译:动态时间扭曲( DTW) 是用来比较时间序列数据( 包括生物信息、 签名验证和语音识别) 的字符串的广泛使用相似度量。 DTW 的标准动态程序程序算法需要O (n2) 美元的时间, 并且有有条件的下限, 这表明没有算法可以做的更好。 然而, 在许多应用程序中, 字符x$ 和 $ 可能包含长长的重复字母, 这意味着它们可以使用运行长的编码压缩。 一个自然的问题是, 这些压缩的字符串之间的 DTW 距离能否以长度( 美元) 和压缩的字符串的 美元来有效计算 。 最近的工作表明, 如何实现 $( kell2 + k2) 和 美元 有条件的下限 。 在许多应用程序中, 字符x $ (k) 美元 和 美元 美元 的 时间算法可能存在 。 我们显示, 如果允许任何小的近似损失, 那么这些压缩字符串之间的时间算算法是 美元 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员