A $c$-crossing-critical graph is one that has crossing number at least $c$ but each of its proper subgraphs has crossing number less than $c$. Recently, a set of explicit construction rules was identified by Bokal, Oporowski, Richter, and Salazar to generate all large $2$-crossing-critical graphs (i.e., all apart from a finite set of small sporadic graphs). They share the property of containing a generalized Wagner graph $V_{10}$ as a subdivision. In this paper, we study these graphs and establish their order, simple crossing number, edge cover number, clique number, maximum degree, chromatic number, chromatic index, and treewidth. We also show that the graphs are linear-time recognizable and that all our proofs lead to efficient algorithms for the above measures.


翻译:以美元为单位的交叉关键图形是一个至少超过1美元(c)的图形,但每个正确的子集的交叉数字都低于1美元(c)。 最近,Bokal、Oporowski、Richter和Salazar确定了一套明确的建筑规则,以生成所有大型的2美元交叉关键图形(即,除一组有限的小零星图形外,所有这些图形都具有共同的属性,它们包含一个通用的Wagner图形 $V ⁇ 10}($V ⁇ 10}), 作为分层。在本文中,我们研究了这些图表,并确定了它们的顺序、简单交叉号、边缘覆盖号、区号、最大度、染色号、色体索引和树线。我们还显示这些图表是线性时间可识别的,我们的所有证据都导致上述措施的有效算法。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2022年2月13日
Arxiv
0+阅读 · 2022年2月11日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员