This work further improves the pseudo-transient approach for the Poisson Boltzmann equation (PBE) in the electrostatic analysis of solvated biomolecules. The numerical solution of the nonlinear PBE is known to involve many difficulties, such as exponential nonlinear term, strong singularity by the source terms, and complex dielectric interface. Recently, a pseudo-time ghost-fluid method (GFM) has been developed in [S. Ahmed Ullah and S. Zhao, Applied Mathematics and Computation, 380, 125267, (2020)], by analytically handling both nonlinearity and singular sources. The GFM interface treatment not only captures the discontinuity in the regularized potential and its flux across the molecular surface, but also guarantees the stability and efficiency of the time integration. However, the molecular surface definition based on the MSMS package is known to induce instability in some cases, and a nontrivial Lagrangian-to-Eulerian conversion is indispensable for the GFM finite difference discretization. In this paper, an Eulerian Solvent Excluded Surface (ESES) is implemented to replace the MSMS for defining the dielectric interface. The electrostatic analysis shows that the ESES free energy is more accurate than that of the MSMS, while being free of instability issues. Moreover, this work explores, for the first time in the PBE literature, adaptive time integration techniques for the pseudo-transient simulations. A major finding is that the time increment $\Delta t$ should become smaller as the time increases, in order to maintain the temporal accuracy. This is opposite to the common practice for the steady state convergence, and is believed to be due to the PBE nonlinearity and its time splitting treatment. Effective adaptive schemes have been constructed so that the pseudo-time GFM methods become more efficient than the constant $\Delta t$ ones.
翻译:这项工作进一步改进了对溶解生物分子的电磁分析中Poisson D Boltzmann 等式( PBE) 的假透明化方法。 非线性 PBE 的数字解决方案已知涉及许多困难, 如指数非线性术语、源术语的强异性以及复杂的电介质。 最近, [S. Ahmed Ullah 和 S. Zhao, 应用数学和调和, 380, 125267, (202020)] 开发了假的幽灵流法(PBEE) 。 通过分析处理非线性 Elineity 和单源。 GFM 界面处理不仅包含正常化潜力的不连续性及其在分子表面的通量, 而且还保障时间整合的稳定性和效率。 然而, 以MSMS 软件包为基础的分子表面定义在某些案例中引起不稳定性, 一种非动态的Lagrangian- 变异性变异性处理和变异性转换是GFMFM 不可缺的。 在本文中, 稳定化的内, 稳定性变现为稳定化的 AS IMES 的流化的流的流化的流流流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流数据, 正在显示的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流化的流数据系统, 正在的流化的流化的流学的流化的流化的流学的流化的流学的流化的流化的流化的流化的流化的流学的流学的流的流的流化的流化的流化的流化的流化的流化的流化的流化的流化的流学的流化的流学