A unified treatment for fast and spectrally accurate evaluation of electrostatic potentials subject to periodic boundary conditions in any or none of the three spatial dimensions is presented. Ewald decomposition is used to split the problem into a real-space and a Fourier-space part, and the FFT-based Spectral Ewald (SE) method is used to accelerate the computation of the latter. A key component in the unified treatment is an FFT-based solution technique for the free-space Poisson problem in three, two or one dimensions, depending on the number of non-periodic directions. The computational cost is furthermore reduced by employing an adaptive FFT for the doubly and singly periodic cases, allowing for different local upsampling factors. The SE method will always be most efficient for the triply periodic case as the cost of computing FFTs will then be the smallest, whereas the computational cost of the rest of the algorithm is essentially independent of periodicity. We show that the cost of removing periodic boundary conditions from one or two directions out of three will only moderately increase the total runtime. Our comparisons also show that the computational cost of the SE method in the free-space case is around four times that of the triply periodic case. The Gaussian window function previously used in the SE method, is here compared to a piecewise polynomial approximation of the Kaiser-Bessel window function. With a carefully tuned shape parameter that is selected based on an error estimate for this new window function, runtimes for the SE method can be further reduced. Furthermore, we consider different methods for computing the force, and compare the runtime of the SE method with that of the Fast Multipole Method.


翻译:对在任何或任何三个空间维度的定期边界条件下定期边界条件下的静电潜能值进行快速和光谱准确评价的统一处理。 Ewald 分解法用于将问题分成一个实际空间和Fleier-空间部分,而FFT基Spectral Ewald (SE) 方法用于加速后者的计算。统一处理中的一个关键组成部分是基于FFFT的关于自由空间 Poisson 问题的三个、两个或一个维度解决方案技术,这取决于非周期方向的数量。计算成本进一步降低,因为对双周期和单周期案例采用适应的FFFFT,允许不同的局部空间空间空间部分,而使用基于FFFT的 Spectraceal Ewald (SE) 方法来加速后者的计算。统一处理中,其余算法的计算成本基本上独立于周期周期性。我们表明,从一个或两个方向中去除定期边界条件的成本只会进一步增加整个运行时间。我们进行的比较还表明,对于双周期的FFFFFFFFT, 方法的计算方法比Sereal-Seal-Seal法的计算法是Seal-rode 一种Server法的计算法。在Seal-server法的计算方法的计算方法在Seal-rvial 一种在Seal 一种方法的计算方法的计算方法的计算方法在Seal-rview方法中,在Servial 一种方法的计算方法的计算方法的计算成本在Seal-xx 一种比。在Seal-xyal 一种方法中,在Syal-xyal-xyal-xyal-x 一种在Syal-sal-sal-sal-de 一种方法的计算方法的计算方法的计算方法的计算方法的计算方法的计算方法的计算方法中,在Seal-sal-sal-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-ral-seral-s 一种方法中,在Seral-seral-seral-seral-sy

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月11日
Arxiv
0+阅读 · 2021年3月11日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关VIP内容
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员