Hop-constrained flows and their duals, moving cuts, are two fundamental quantities in network optimization. Up to poly-logarithmic factors, they characterize how quickly a network can accomplish numerous distributed primitives. In this work, we give the first efficient algorithms for computing $(1 \pm \epsilon) $-optimal $h$-hop-constrained flows and moving cuts with high probability. Our algorithms take $\tilde{O}(m \cdot \text{poly}(h))$ sequential time, $\tilde{O}(\text{poly}(h))$ parallel time and $\tilde{O}(\text{poly}(h))$ distributed CONGEST time. We use these algorithms to efficiently compute hop-constrained cutmatches, an object at the heart of recent advances in expander decompositions.
翻译:在网络优化中,受控的流量及其双轨(移动削减)是两个基本数量。在多对数因素中,它们描述一个网络能够快速完成多个分布的原始数据。在这项工作中,我们给出了计算(1\pm\epsilon)美元($1\pm \epsilon) 和高概率($-hop-hop) 限制的流量和移动削减的首个高效算法。我们的算法需要$\tilde{O}(h) 美元顺序时间、$\tilde{(text{poly}(h)) 美元平行时间和$\tilde{O}(\\\text{poly}(h)) 美元分配的 CONEST 时间。我们使用这些算法来高效地计算受控的切片,这是扩张器分解器最近进展的核心。