Clothing plays a vital role in real life and hence, is also important for virtual realities and virtual applications, such as online retail, virtual try-on, and real-time digital avatar interactions. However, choosing the correct parameters to generate realistic clothing requires expert knowledge and is often an arduous manual process. To alleviate this issue, we develop a pipeline for automatically determining the static material parameters required to simulate clothing of a particular material based on easily captured real-world fabrics. We use differentiable simulation to find an optimal set of parameters that minimizes the difference between simulated cloth and deformed target cloth. Our novel well-suited loss function is optimized through non-linear least squares. We designed our objective function to capture material-specific behavior, resulting in similar values for different wrinkle configurations of the same material. While existing methods carefully design experiments to isolate stretch parameters from bending modes, we embrace that stretching fabrics causes wrinkling. We estimate bending first, given that membrane stiffness has little effect on bending. Furthermore, our pipeline decouples the capture method from the optimization by registering a template mesh to the scanned data. These choices simplify the capture system and allow for wrinkles in scanned fabrics. We use a differentiable extended position-based dynamics (XPBD) cloth simulator, which is capable of real-time simulation. We demonstrate our method on captured data of three different real-world fabrics and on three digital fabrics produced by a third-party simulator.


翻译:服装在现实生活中发挥着至关重要的作用,因此,对于虚拟现实和虚拟应用,例如在线零售、虚拟试运行和实时数字阿凡达互动等虚拟现实和虚拟应用也很重要。然而,选择正确参数以产生现实服装需要专家知识,而且往往是一个艰巨的手工过程。为了缓解这一问题,我们开发了一条管道,自动确定模拟基于容易捕捉的现实世界布料的某种材料的服装所需的静态材料参数。我们使用不同的模拟来找到一套最佳参数,最大限度地缩小模拟布料和变形目标布料之间的差异。我们新颖的合宜损失功能通过非线性最小方块优化。我们设计了我们的目标功能以捕捉特定材料的行为,导致同一材料的不同皱纹配置的数值相似。虽然我们精心设计了一种实验方法,以从弯曲模式的布料中分离出拉伸缩的参数,但我们首先估计弯曲,因为基于膜的僵硬度对弯曲不起作用。此外,我们编织的精密损失功能通过非线性最小的最小的平方块进行优化。我们设计了我们设计中的截断式方法,通过在真实的模机结构中安装的三层结构的模型进行优化,从而可以复制到扫描数据演示。这些方法可以复制。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月16日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员