Human motion synthesis and editing are essential to many applications like film post-production. However, they often introduce artefacts in motions, which can be detrimental to the perceived realism. In particular, footskating is a frequent and disturbing artefact requiring foot contacts knowledge to be cleaned up. Current approaches to obtain foot contact labels rely either on unreliable threshold-based heuristics or on tedious manual annotation. In this article, we address foot contact label detection from motion with a deep learning. To this end, we first publicly release UnderPressure, a novel motion capture database labelled with pressure insoles data serving as reliable knowledge of foot contact with the ground. Then, we design and train a deep neural network to estimate ground reaction forces exerted on the feet from motion data and then derive accurate foot contact labels. The evaluation of our model shows that we significantly outperform heuristic approaches based on height and velocity thresholds and that our approach is much more robust on motion sequences suffering from perturbations like noise or footskate. We further propose a fully automatic workflow for footskate cleanup: foot contact labels are first derived from estimated ground reaction forces. Then, footskate is removed by solving foot constraints through an optimisation-based inverse kinematics (IK) approach that ensures consistency with the estimated ground reaction forces. Beyond footskate cleanup, both the database and the method we propose could help to improve many approaches based on foot contact labels or ground reaction forces, including inverse dynamics problems like motion reconstruction and learning of deep motion models in motion synthesis or character animation. Our implementation, pre-trained model as well as links to database can be found at https://github.com/InterDigitalInc/UnderPressure.


翻译:人类运动合成和编辑对于许多应用程序来说是必不可少的, 比如电影制片后制作。 但是, 它们常常在运动中引入手工艺品, 这可能有害于感知的现实主义。 具体地说, 脚步滑动是一种经常和令人不安的人工工艺, 需要脚接触知识来清理。 目前获取脚步接触标签的方法依赖于不可靠的门槛性休眠法或烦琐的手动注释。 在本篇文章中, 我们从运动的触摸中, 解决脚接触标签的检测问题, 并进行深入的学习。 为此, 我们首先公开发布“ 下镜”, 一个带有压力的深度运动捕获数据库, 以压力质粒子数据作为与地面接触的可靠知识。 然后, 我们设计并训练一个深层神经网络, 来估计脚步态反应力量, 从运动数据中估算脚步动反应力。 模型的评估显示, 我们大大超越了以高度和速度阈值为起点的偏振动方法, 我们的方法在运动前的顺序上可能更加稳健健。 我们进一步提议一个完整的脚步式清除脚脚步的工作流程: 脚上的接触模式标签是首先从运动运动运动运动运动运动运动运动运动运动运动,, 在估计地面反应数据库中, 学习后, 学会中, 学会中, 学习后, 学习后路路路路路路路路路路, 路路路路路路路路路路路路,, 通过测路, 路路路, 路路, 路, 路, 路, 路, 路, 路, 路, 路, 路路路, 路, 路, 路路, 路, 路, 路, 路路, 路, 路, 路, 路, 路, 路路路路, 路路路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路, 路路路路, 路, 路, 路路路, 路, 路,

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员