State-of-the-art subspace clustering methods are based on self-expressive model, which represents each data point as a linear combination of other data points. However, such methods are designed for a finite sample dataset and lack the ability to generalize to out-of-sample data. Moreover, since the number of self-expressive coefficients grows quadratically with the number of data points, their ability to handle large-scale datasets is often limited. In this paper, we propose a novel framework for subspace clustering, termed Self-Expressive Network (SENet), which employs a properly designed neural network to learn a self-expressive representation of the data. We show that our SENet can not only learn the self-expressive coefficients with desired properties on the training data, but also handle out-of-sample data. Besides, we show that SENet can also be leveraged to perform subspace clustering on large-scale datasets. Extensive experiments conducted on synthetic data and real world benchmark data validate the effectiveness of the proposed method. In particular, SENet yields highly competitive performance on MNIST, Fashion MNIST and Extended MNIST and state-of-the-art performance on CIFAR-10. The code is available at https://github.com/zhangsz1998/Self-Expressive-Network.
翻译:最新的子空间群集方法基于自我表达模型,它代表每个数据点,作为其他数据点的线性组合,代表每个数据点,但这种方法是为有限的抽样数据集设计的,缺乏概括性数据的能力;此外,由于自我表达系数的数量随着数据点的数量而四重增长,它们处理大型数据集的能力往往有限;在本文中,我们提议了一个新的子空间群集框架,称为自我开发网络,它使用一个设计得当的神经网络学习数据自我表达的表示方式;我们表明,我们的SENet不仅可以学习具有所需特性的培训数据自我表达系数,而且还能够处理外表性数据;此外,我们表明,SENet还可以被利用在大型数据集上进行子空间群集;对合成数据和真实世界基准数据进行的广泛试验,以证实拟议方法的有效性。特别是,SENet在MINIT、FASimas-HAR-MISMISMA/MISMISMAMISMISMADADADRMMISMISMRMISMMISMISADADMISMISMISMISMISMISMISMADADRMISMISMISMISMISMDRISMISMISMISMISMISMISMISMADADAGISMSISMAGISMADSISMISMISMSISMTAGISMISMTAGISMSGISMSGISMSISMSISMSGISMSDSDSDSDSDSDSDSDSDSDSDSDSDSDSISMSDSISMSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDS