As a statistical tool to assist formative assessments in educational settings, diagnostic classification models (DCMs) have been increasingly used to provide diagnostic information regarding examinees' attributes. DCMs often adopt a dichotomous division such as the mastery and non-mastery of attributes to express the mastery states of attributes. However, many practical settings involve different levels of mastery states rather than a simple dichotomy in a single attribute. Although this practical demand can be addressed by polytomous-attribute DCMs, their computational cost in a Markov chain Monte Carlo estimation impedes their large-scale application due to the larger number of polytomous-attribute mastery patterns than that of binary-attribute ones. This study considers a scalable Bayesian estimation method for polytomous-attribute DCMs and developed a variational Bayesian (VB) algorithm for a polytomous-attribute saturated DCM -- a generalization of polytomous-attribute DCMs -- by building on the existing literature on polytomous-attribute DCMs and VB for binary-attribute DCMs. Furthermore, we proposed the configuration of parallel computing for the proposed VB algorithm to achieve better computational efficiency. Monte Carlo simulations revealed that our method exhibited the high performance in parameter recovery under a wide range of conditions. An empirical example is used to demonstrate the utility of our method.
翻译:诊断性分类模型(DCMS)作为协助教育环境中形成评估的统计工具,越来越多地用于提供检查属性的诊断性信息。DCMS通常采用二分法分法,如掌握和非掌握属性以表达主属性状态。然而,许多实际设置涉及掌握状态的不同水平,而不是一个属性的简单二分法。虽然这一实际需求可以通过多位匹配式DCMS来解决,但是,在Markov链链的Monte Carlo估计中,它们的计算成本妨碍了其大规模应用,因为多位配制的掌握模式比二元属性的多。本研究认为,多位配制的属性和非控制属性的掌握性能分析方法可以伸缩的Bayesian估计方法,并且为多位配制的饱和调和调和调和调和调和调和调和调和调和调和调和调和调和的DCMS的计算成本计算方法制定了一个可调和的调和性估算法。 以现有关于多位配制的多位配制的多位配制制制制的DCMS和VB的计算方法的现有文献为基础,为我们双配制的双配制的双配制的计算方法,在双行的模拟中,为我们双行的自动的自动的模拟的计算法的计算法的计算法化的计算方法,为我们的双行进进进法的模拟的模拟的模拟的模拟的模拟的演算法,为我们制方法的拟议制的计算法,为我们制的模拟的模拟法的模拟法,为我们制的自动算法。