We propose a Gaussian manifold variational auto-encoder (GM-VAE) whose latent space consists of a set of diagonal Gaussian distributions. It is known that the set of the diagonal Gaussian distributions with the Fisher information metric forms a product hyperbolic space, which we call a Gaussian manifold. To learn the VAE endowed with the Gaussian manifold, we first propose a pseudo Gaussian manifold normal distribution based on the Kullback-Leibler divergence, a local approximation of the squared Fisher-Rao distance, to define a density over the latent space. With the newly proposed distribution, we introduce geometric transformations at the last and the first of the encoder and the decoder of VAE, respectively to help the transition between the Euclidean and Gaussian manifolds. Through the empirical experiments, we show competitive generalization performance of GM-VAE against other variants of hyperbolic- and Euclidean-VAEs. Our model achieves strong numerical stability, which is a common limitation reported with previous hyperbolic-VAEs.
翻译:我们提出高斯多元多变自动编码器(GM-VAE),其潜在空间由一组对角高斯分布法组成。众所周知,与Fisher信息度度衡量法的对角高斯分布法构成一个产品双曲空间,我们称之为高斯多元体。要学习拥有高斯多元体的VAE,我们首先提议一个假高斯多元正常分布法,其基础是Kullback-Leibel差差差差,即方形Fisher-Rao距离的局部近似,以界定潜层空间的密度。根据新提议的分布法,我们采用对角高斯分布法的对角分布法,在VAE的最后一个和第一个编码器和分解码器分别进行几何转换,以帮助在Euclidean和高斯多元体之间过渡。通过实验,我们展示了GM-VAE相对于超偏差和Euclidean-VAE的其他变体的竞争性通用性表现。我们的模型实现了强大的数字稳定性,这是与前双面压值的常见限制。