Combinatorial problems such as combinatorial optimization and constraint satisfaction problems arise in decision-making across various fields of science and technology. In real-world applications, when multiple optimal or constraint-satisfying solutions exist, enumerating all these solutions -- rather than finding just one -- is often desirable, as it provides flexibility in decision-making. However, combinatorial problems and their enumeration versions pose significant computational challenges due to combinatorial explosion. To address these challenges, we propose enumeration algorithms for combinatorial optimization and constraint satisfaction problems using Ising machines. Ising machines are specialized devices designed to efficiently solve combinatorial problems. Typically, they sample low-cost solutions in a stochastic manner. Our enumeration algorithms repeatedly sample solutions to collect all desirable solutions. The crux of the proposed algorithms is their stopping criteria for sampling, which are derived based on probability theory. In particular, the proposed algorithms have theoretical guarantees that the failure probability of enumeration is bounded above by a user-specified value, provided that lower-cost solutions are sampled more frequently and equal-cost solutions are sampled with equal probability. Many physics-based Ising machines are expected to (approximately) satisfy these conditions. As a demonstration, we applied our algorithm using simulated annealing to maximum clique enumeration on random graphs. We found that our algorithm enumerates all maximum cliques in large dense graphs faster than a conventional branch-and-bound algorithm specially designed for maximum clique enumeration. This demonstrates the promising potential of our proposed approach.
翻译:暂无翻译