In this paper we will present the Multidimensional Byzantine Agreement (MBA) Protocol, a leaderless Byzantine agreement protocol defined for complete and synchronous networks that allows a network of nodes to reach consensus on a vector of relevant information regarding a set of observed events. The consensus process is carried out in parallel on each component, and the output is a vector whose components are either values with wide agreement in the network (even if no individual node agrees on every value) or a special value $\bot$ that signals irreconcilable disagreement. The MBA Protocol is probabilistic and its execution halts with probability 1, and the number of steps necessary to halt follows a Bernoulli-like distribution. The design combines a Multidimensional Graded Consensus and a Multidimensional Binary Byzantine Agreement, the generalization to the multidimensional case of two protocols by Micali and Feldman. We prove the correctness and security of the protocol assuming a synchronous network where less than a third of the nodes are malicious.


翻译:在本文中,我们将介绍《多层面拜占庭协定议定书》,这是一项无领导人的拜占庭协定议定书,其定义是完整同步的网络,使节点网络能够就一组观测事件相关信息的矢量达成共识。共识进程是平行进行的,每个组成部分的共识进程是平行进行的,产出是一个矢量,其组成部分为在网络中达成广泛一致的价值观(即使没有单个节点就每个价值达成一致)或一个特别价值$\bot美元,这表示无法调和的分歧。《地中海协定议定书》是概率性的,其执行以概率1为标准,在类似伯努利的分布之后,停止执行的必要步骤的数目。设计将一个多层面的多层面分级共识和一个多维的《比尚庭协定》结合起来,这是Micali和Feldman两项协议的通用。我们证明,假设一个同步网络,其中不到三分之一的节点是恶意的,协议是正确和安全的。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月5日
Arxiv
0+阅读 · 2021年9月5日
Arxiv
0+阅读 · 2021年9月4日
Arxiv
0+阅读 · 2021年9月2日
VIP会员
相关VIP内容
应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员