When the dimension of data is comparable to or larger than the number of data samples, Principal Components Analysis (PCA) may exhibit problematic high-dimensional noise. In this work, we propose an Empirical Bayes PCA method that reduces this noise by estimating a joint prior distribution for the principal components. EB-PCA is based on the classical Kiefer-Wolfowitz nonparametric MLE for empirical Bayes estimation, distributional results derived from random matrix theory for the sample PCs, and iterative refinement using an Approximate Message Passing (AMP) algorithm. In theoretical "spiked" models, EB-PCA achieves Bayes-optimal estimation accuracy in the same settings as an oracle Bayes AMP procedure that knows the true priors. Empirically, EB-PCA significantly improves over PCA when there is strong prior structure, both in simulation and on quantitative benchmarks constructed from the 1000 Genomes Project and the International HapMap Project. An illustration is presented for analysis of gene expression data obtained by single-cell RNA-seq.


翻译:在这项工作中,我们建议采用“经验型贝耶斯”五氯苯甲醚方法,通过估计主要组成部分的先前联合分布来减少这种噪音。EB-PCA基于古典Kiefer-Wolfowitz的非参数MLE,用于经验型贝叶估计,来自抽样PC的随机矩阵理论的分布结果,以及使用“近似消息传递”算法的迭接精炼。在理论性“喷射”模型中,EB-PCA作为了解真实前程的甲骨骼AMP程序,在同一环境中达到巴耶斯-最佳估计精度。在模拟和从1000个基因组项目和国际哈普马普项目中构建的定量基准方面,EPB-PCA在具有很强的先前结构时大大改进了五氯苯。为分析单细胞RNA-Seq获得的基因表达数据提供了插图。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
【开放书】《现代统计学导论》,549页pdf
专知会员服务
71+阅读 · 2021年7月11日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
盘一盘 Python 系列 8 - Sklearn
平均机器
5+阅读 · 2019年5月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【开放书】《现代统计学导论》,549页pdf
专知会员服务
71+阅读 · 2021年7月11日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
盘一盘 Python 系列 8 - Sklearn
平均机器
5+阅读 · 2019年5月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员