Tea leaf diseases are a major challenge to agricultural productivity, with far-reaching implications for yield and quality in the tea industry. The rise of machine learning has enabled the development of innovative approaches to combat these diseases. Early detection and diagnosis are crucial for effective crop management. For predicting tea leaf disease, several automated systems have already been developed using different image processing techniques. This paper delivers a systematic review of the literature on machine learning methodologies applied to diagnose tea leaf disease via image classification. It thoroughly evaluates the strengths and constraints of various Vision Transformer models, including Inception Convolutional Vision Transformer (ICVT), GreenViT, PlantXViT, PlantViT, MSCVT, Transfer Learning Model & Vision Transformer (TLMViT), IterationViT, IEM-ViT. Moreover, this paper also reviews models like Dense Convolutional Network (DenseNet), Residual Neural Network (ResNet)-50V2, YOLOv5, YOLOv7, Convolutional Neural Network (CNN), Deep CNN, Non-dominated Sorting Genetic Algorithm (NSGA-II), MobileNetv2, and Lesion-Aware Visual Transformer. These machine-learning models have been tested on various datasets, demonstrating their real-world applicability. This review study not only highlights current progress in the field but also provides valuable insights for future research directions in the machine learning-based detection and classification of tea leaf diseases.
翻译:暂无翻译