We introduce RoboPose, a method to estimate the joint angles and the 6D camera-to-robot pose of a known articulated robot from a single RGB image. This is an important problem to grant mobile and itinerant autonomous systems the ability to interact with other robots using only visual information in non-instrumented environments, especially in the context of collaborative robotics. It is also challenging because robots have many degrees of freedom and an infinite space of possible configurations that often result in self-occlusions and depth ambiguities when imaged by a single camera. The contributions of this work are three-fold. First, we introduce a new render & compare approach for estimating the 6D pose and joint angles of an articulated robot that can be trained from synthetic data, generalizes to new unseen robot configurations at test time, and can be applied to a variety of robots. Second, we experimentally demonstrate the importance of the robot parametrization for the iterative pose updates and design a parametrization strategy that is independent of the robot structure. Finally, we show experimental results on existing benchmark datasets for four different robots and demonstrate that our method significantly outperforms the state of the art. Code and pre-trained models are available on the project webpage https://www.di.ens.fr/willow/research/robopose/.
翻译:我们引入 RoboPose, 这是一种用一个 RGB 图像来估计一个已知的清晰机器人的共振角度和 6D 相机到 robot 形状的方法。 这是一个重要问题, 使移动和流动自主系统能够与其他机器人互动, 仅使用非工具环境中的视觉信息, 特别是在协作机器人背景下。 这也是个挑战性的问题, 因为机器人拥有许多程度的自由, 以及无限空间的可能的配置, 当用一个相机图像绘制时, 往往导致自我封闭和深度模糊。 这项工作的贡献是三重。 首先, 我们引入一种新的转换和比较方法, 用于估算一个可以从合成数据中培训的6D 显示和 联合角度的清晰机器人的 6D 配置和 。 通用到测试时的新的看不见机器人配置, 并且可以应用到各种机器人。 其次, 我们实验性地展示了机器人对迭代面面面面面容更新和设计一个独立于机器人结构的等离子化战略的重要性。 最后, 我们展示了四个不同机器人/ 网络模型/ 模型的实验结果 。 模型和模型前的状态 。