This paper proposes a new family of algorithms for the online optimisation of composite objectives. The algorithms can be interpreted as the combination of the exponentiated gradient and $p$-norm algorithm. Combined with algorithmic ideas of adaptivity and optimism, the proposed algorithms achieve a sequence-dependent regret upper bound, matching the best-known bounds for sparse target decision variables. Furthermore, the algorithms have efficient implementations for popular composite objectives and constraints and can be converted to stochastic optimisation algorithms with the optimal accelerated rate for smooth objectives.
翻译:本文提议了一套新的算法,用于在网上优化复合目标。算法可以被解释为将推出梯度和$p$-norm算法结合起来。 结合适应性和乐观的算法概念,提议的算法实现了一个取决于序列的遗憾上限,与最著名的稀有目标决定变量的界限相匹配。 此外,算法对流行综合目标和制约因素具有高效的实施功能,可以转换为随机优化算法,为平稳目标提供最佳加速率。