This paper focuses on exploring efficient ways to find $\mathcal{H}_2$ optimal Structure-Preserving Model Order Reduction (SPMOR) of the second-order systems via interpolatory projection-based method Iterative Rational Krylov Algorithm (IRKA). To get the reduced models of the second-order systems, the classical IRKA deals with the equivalent first-order converted forms and estimates the first-order reduced models. The drawbacks of that of the technique are failure of structure preservation and abolishing the properties of the original models, which are the key factors for some of the physical applications. To surpass those issues, we introduce IRKA based techniques that enable us to approximate the second-order systems through the reduced models implicitly without forming the first-order forms. On the other hand, there are very challenging tasks to the Model Order Reduction (MOR) of the large-scale second-order systems with the optimal $\mathcal{H}_2$ error norm and attain the rapid rate of convergence. For the convenient computations, we discuss competent techniques to determine the optimal $\mathcal{H}_2$ error norms efficiently for the second-order systems. The applicability and efficiency of the proposed techniques are validated by applying them to some large-scale systems extracted form engineering applications. The computations are done numerically using MATLAB simulation and the achieved results are discussed in both tabular and graphical approaches.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员