Calibrating statistical models using Bayesian inference often requires both accurate and timely estimates of parameters of interest. Particle Markov Chain Monte Carlo (p-MCMC) and Sequential Monte Carlo Squared (SMC$^2$) are two methods that use an unbiased estimate of the log-likelihood obtained from a particle filter (PF) to evaluate the target distribution. P-MCMC constructs a single Markov chain which is sequential by nature so cannot be readily parallelized using Distributed Memory (DM) architectures. This is in contrast to SMC$^2$ which includes processes, such as importance sampling, that are described as \textit{embarrassingly parallel}. However, difficulties arise when attempting to parallelize resampling. None-the-less, the choice of backward kernel, recycling scheme and compatibility with DM architectures makes SMC$^2$ an attractive option when compared with p-MCMC. In this paper, we present an SMC$^2$ framework that includes the following features: an optimal (in terms of time complexity) $\mathcal{O}(\log_2N)$ parallelization for DM architectures, an approximately optimal (in terms of accuracy) backward kernel, and an efficient recycling scheme. On a cluster of $128$ DM processors, the results on a biomedical application show that SMC$^2$ achieves up to a $70\times$ speed-up vs its sequential implementation. It is also more accurate and roughly $54\times$ faster than p-MCMC. A GitHub link is given which provides access to the code.


翻译:暂无翻译

0
下载
关闭预览

相关内容

SMC:IEEE International Conference on Systems,Man, and Cybernetics Explanation:IEEE系统、人与控制论国际会议。 Publisher:IEEE。 SIT: https://dblp.uni-trier.de/db/conf/smc/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员