We build an asymptotically compatible energy of the variable-step L2-$1_{\sigma}$ scheme for the time-fractional Allen-Cahn model with the Caputo's fractional derivative of order $\alpha\in(0,1)$, under a weak step-ratio constraint $\tau_k/\tau_{k-1}\geq r_{\star}(\alpha)$ for $k\ge2$, where $\tau_k$ is the $k$-th time-step size and $r_{\star}(\alpha)\in(0.3865,0.4037)$ for $\alpha\in(0,1)$. It provides a positive answer to the open problem in [J. Comput. Phys., 414:109473], and, to the best of our knowledge, it is the first second-order nonuniform time-stepping scheme to preserve both the maximum bound principle and the energy dissipation law of time-fractional Allen-Cahn model. The compatible discrete energy is constructed via a novel discrete gradient structure of the second-order L2-$1_{\sigma}$ formula by a local-nonlocal splitting technique. It splits the discrete fractional derivative into two parts: one is a local term analogue to the trapezoid rule of the first derivative and the other is a nonlocal summation analogue to the L1 formula of Caputo derivative. Numerical examples with an adaptive time-stepping strategy are provided to show the effectiveness of our scheme and the asymptotic properties of the associated modified energy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年3月7日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员