Concept Bottleneck Models (CBM) are inherently interpretable models that factor model decisions into human-readable concepts. They allow people to easily understand why a model is failing, a critical feature for high-stakes applications. CBMs require manually specified concepts and often under-perform their black box counterparts, preventing their broad adoption. We address these shortcomings and are first to show how to construct high-performance CBMs without manual specification of similar accuracy to black box models. Our approach, Language Guided Bottlenecks (LaBo), leverages a language model, GPT-3, to define a large space of possible bottlenecks. Given a problem domain, LaBo uses GPT-3 to produce factual sentences about categories to form candidate concepts. LaBo efficiently searches possible bottlenecks through a novel submodular utility that promotes the selection of discriminative and diverse information. Ultimately, GPT-3's sentential concepts can be aligned to images using CLIP, to form a bottleneck layer. Experiments demonstrate that LaBo is a highly effective prior for concepts important to visual recognition. In the evaluation with 11 diverse datasets, LaBo bottlenecks excel at few-shot classification: they are 11.7% more accurate than black box linear probes at 1 shot and comparable with more data. Overall, LaBo demonstrates that inherently interpretable models can be widely applied at similar, or better, performance than black box approaches.
翻译:概念瓶装模型(CBM)本质上是可以解释的模型,这些模型将模型决定作为模型决定作为人类可理解的概念。它们使人们能够很容易地理解为什么模型失败,这是高镜头应用的关键特征。建立信任措施需要人工指定概念,而且往往不完善其黑盒对应方,防止其被广泛采用。我们处理这些缺陷,并首先展示如何在没有与黑盒模型相似的精确度的手工规格的情况下建立高性能的建立信任措施。我们的方法,语言引导瓶装模型(LaBo),利用语言模型(GPT-3)来界定巨大的可能瓶颈空间。鉴于一个问题域,LaBo使用GPT-3来生成关于形成候选概念类别的事实句子。LaBo高效地搜索可能的瓶颈,通过新的子模块工具促进选择歧视性和多样化的信息。最终,GPT-3的感知性概念可以与使用CLIP的图像相匹配,形成一个瓶颈层。实验表明,LaBo在视觉识别的重要概念之前是高度有效的。在有11个不同数据集的评估中,LaBo 瓶颈优于几个级的直观模型,可以比较精确地解释11号。