In previous research, quantum resources were concretely estimated for solving Elliptic Curve Discrete Logarithm Problem(ECDLP). In [1], the quantum algorithm was optimized for the binary elliptic curves and the main optimization target was the number of the logical qubits. The division algorithm was mainly optimized in [1] since every ancillary qubit is used in the division algorithm. In this paper, we suggest a new quantum division algorithm on the binary field which uses a smaller number of qubits. For elements in a field of $2^n$, we can save $\lceil n/2 \rceil - 1$ qubits instead of using $8n^2+4n-12+(16n-8)\lfloor\log(n)\rfloor$ more Toffoli gates, which leads to a more space-efficient quantum algorithm for binary elliptic curves.
翻译:在先前的研究中,对量子资源进行了具体估计,以解决 Elliptic Curve Discrete Logaritms (ECDLP) 问题(ECDLP) 。 在 [1] 中,为二进制椭圆曲线优化了量子算法,而主要优化的目标是逻辑qubit的数量。 分区算法主要在[1] 中优化, 因为每个辅助qubit 都用于分区算法。 在本文中, 我们建议在二进制域上采用一种新的量子算法, 使用较少的qubits。 对于2<unk> 的域中元素, 我们可以节省$\lcil n/2\rceil - 1 qubits, 而不是使用 $$2+4n-12+( 16n-8)\l Ploportolog\r pol$更多Toffoli 门, 这使得二进制椭曲线的量子算法更具有空间效率。</s>