In this paper, we seek to measure how much information a component in a neural network could extract from the representations fed into it. Our work stands in contrast to prior probing work, most of which investigates how much information a model's representations contain. This shift in perspective leads us to propose a new principle for probing, the architectural bottleneck principle: In order to estimate how much information a given component could extract, a probe should look exactly like the component. Relying on this principle, we estimate how much syntactic information is available to transformers through our attentional probe, a probe that exactly resembles a transformer's self-attention head. Experimentally, we find that, in three models (BERT, ALBERT, and RoBERTa), a sentence's syntax tree is mostly extractable by our probe, suggesting these models have access to syntactic information while composing their contextual representations. Whether this information is actually used by these models, however, remains an open question.
翻译:在本文中, 我们试图测量神经网络中包含的信息能从输入的表达中提取多少信息。 我们的工作与先前的检验工作形成鲜明对比, 其中多数调查模型的表述包含多少信息。 这种观点的转变导致我们提出一个新的检验原则, 即建筑瓶颈原则: 为了估计某个元素能提取多少信息, 检测应该与元素完全相似。 依据这一原则, 我们估计变异器可以通过我们的注意力探测器获得多少合成信息, 与一个变异器的自我关注头部完全相似。 实验性地, 我们发现, 在三种模型( BERT、 ALBERT 和 RoBERTA)中, 判决的语法树大多可以通过我们的检测提取, 表明这些模型在进行背景描述时可以获取合成信息。 但是, 这些模型是否实际使用这些信息, 仍然是个未决问题 。