We propose methods to strengthen the invariance properties of representations obtained by contrastive learning. While existing approaches implicitly induce a degree of invariance as representations are learned, we look to more directly enforce invariance in the encoding process. To this end, we first introduce a training objective for contrastive learning that uses a novel regularizer to control how the representation changes under transformation. We show that representations trained with this objective perform better on downstream tasks and are more robust to the introduction of nuisance transformations at test time. Second, we propose a change to how test time representations are generated by introducing a feature averaging approach that combines encodings from multiple transformations of the original input, finding that this leads to across the board performance gains. Finally, we introduce the novel Spirograph dataset to explore our ideas in the context of a differentiable generative process with multiple downstream tasks, showing that our techniques for learning invariance are highly beneficial.
翻译:我们提出了加强通过对比性学习获得的表达方式的不稳定性的方法。 虽然现有的方法在学习表达方式时暗含地诱发一定程度的差异性, 我们期待在编码过程中更直接地强制实施差异性。 为此, 我们首先引入一项培训目标, 用于对比性学习, 使用新颖的正规化器来控制转型过程中的表达方式变化。 我们显示, 以该目标培训的表达方式在下游任务上表现得更好, 并且更有力地在测试时引入干扰性转变。 其次, 我们提议改变测试时间表达方式的方式, 引入一种将原始投入的多重转换编码结合起来的特征平均法, 从而发现这会导致整个系统的业绩收益。 最后, 我们引入了新型的 Spirlogic 数据集, 以在与多个下游任务不同的基因化过程中探索我们的想法, 表明我们学习常性变化的技术非常有益 。