When recognizing emotions, subtle nuances in displays of emotion generate ambiguity or uncertainty in emotion perception. Emotion uncertainty has been previously interpreted as inter-rater disagreement among multiple annotators. In this paper, we consider a more common and challenging scenario: modeling emotion uncertainty when only single emotion labels are available. From a Bayesian perspective, we propose to use deep ensembles to capture uncertainty for multiple emotion descriptors, i.e., action units, discrete expression labels and continuous descriptors. We further apply iterative self-distillation. Iterative distillation over multiple generations significantly improves performance in both emotion recognition and uncertainty estimation. Our method generates single student models that provide accurate estimates of uncertainty for in-domain samples and a student ensemble that can detect out-of-domain samples. Our experiments on emotion recognition and uncertainty estimation using the Aff-wild2 dataset demonstrate that our algorithm gives more reliable uncertainty estimates than both Temperature Scaling and Monte Carol Dropout.


翻译:当识别情感时,情感表现中的细微细细细细在情感感知中产生模糊或不确定。情感不确定性以前被解释为多个说明者之间的跨时代分歧。在本文中,我们考虑一种更常见和更具挑战性的设想:在只有单一情感标签的情况下,建模情感不确定性。从巴伊西亚的角度来看,我们提议使用深层的组合来捕捉多种情感描述器的不确定性,即动作单位、离散表达标签和连续描述器。我们进一步应用了迭代自我蒸馏。多代人的循环蒸馏极大地改善了情感识别和不确定性估计的性能。我们的方法生成了单一的学生模型,为体内样本和学生群提供准确的不确定性估计,从而能够探测外部样本。我们利用Aff-wild2数据集进行的情感识别和不确定性估算实验表明,我们的算法提供了比温度缩放和蒙特·卡罗尔流出更可靠的不确定性估算值。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年4月12日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
利用Uncertainty修正Domain Adaptation中的伪标签
极市平台
3+阅读 · 2020年4月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
6+阅读 · 2018年12月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年4月12日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
利用Uncertainty修正Domain Adaptation中的伪标签
极市平台
3+阅读 · 2020年4月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
6+阅读 · 2018年12月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员