This work establishes the first framework of federated $\mathcal{X}$-armed bandit, where different clients face heterogeneous local objective functions defined on the same domain and are required to collaboratively figure out the global optimum. We propose the first federated algorithm for such problems, named \texttt{Fed-PNE}. By utilizing the topological structure of the global objective inside the hierarchical partitioning and the weak smoothness property, our algorithm achieves sublinear cumulative regret with respect to both the number of clients and the evaluation budget. Meanwhile, it only requires logarithmic communications between the central server and clients, protecting the client privacy. Experimental results on synthetic functions and real datasets validate the advantages of \texttt{Fed-PNE} over single-client algorithms and federated multi-armed bandit algorithms.
翻译:这项工作建立了第一个联邦制的 $mathcal{X}$-armaed 土匪框架, 不同的客户在同一个领域面临不同的地方目标功能, 并且需要合作找出全球最佳的方法。 我们为这类问题提出了第一个联合算法, 名为\ textt{ Fed- PNE}。 通过在等级分隔和光滑性差属性内利用全球目标的地形结构, 我们的算法在客户数量和评估预算上都实现了子线性累积遗憾。 与此同时, 它只需要中央服务器和客户之间的对数通信, 保护客户隐私。 合成函数和真实数据集的实验结果验证了\ textt{ Fed- PNE} 相对于单客户算法和联邦制多臂土匪算法的优势。