Solving for the lowest energy eigenstate of the many-body Schrodinger equation is a cornerstone problem that hinders understanding of a variety of quantum phenomena. The difficulty arises from the exponential nature of the Hilbert space which casts the governing equations as an eigenvalue problem of exponentially large, structured matrices. Variational methods approach this problem by searching for the best approximation within a lower-dimensional variational manifold. In this work we use graph neural networks to define a structured variational manifold and optimize its parameters to find high quality approximations of the lowest energy solutions on a diverse set of Heisenberg Hamiltonians. Using graph networks we learn distributed representations that by construction respect underlying physical symmetries of the problem and generalize to problems of larger size. Our approach achieves state-of-the-art results on a set of quantum many-body benchmark problems and works well on problems whose solutions are not positive-definite. The discussed techniques hold promise of being a useful tool for studying quantum many-body systems and providing insights into optimization and implicit modeling of exponentially-sized objects.


翻译:解决多体Schrodinger方程式中最低能量天体等离子体是一个核心问题,阻碍人们了解各种量子现象。困难来自Hilbert空间的指数性质。Hilbert空间将主导方程式作为指数性大型结构化矩阵的元值问题,将主导方程式作为指数性巨型结构矩阵的元值问题。变式方法通过在低维变异方体中寻找最佳近似来解决这一问题。在这项工作中,我们使用图形神经网络来定义结构化的变异元并优化其参数,以找到不同组的海森堡汉密尔顿人的最低能量解决方案的高质量近似值。使用图形网络,我们通过构建尊重问题的基本物理对称和广化规模问题的方法,我们的方法在一组量子多体基准问题上取得了最先进的结果,并很好地处理其解决办法不是正面-确定型的问题。讨论的技术有望成为研究量子体多体系统的有用工具,并提供对指数大小物体的优化和隐含型模型的洞察力。

0
下载
关闭预览

相关内容

【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
151+阅读 · 2020年6月28日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
342+阅读 · 2020年1月27日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月7日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月7日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
23+阅读 · 2018年10月1日
Top
微信扫码咨询专知VIP会员