Safe autonomous navigation in unknown environments is an important problem for ground, aerial, and underwater robots. This paper proposes techniques to learn the dynamics models of a mobile robot from trajectory data and synthesize a tracking controller with safety and stability guarantees. The state of a mobile robot usually contains its position, orientation, and generalized velocity and satisfies Hamilton's equations of motion. Instead of a hand-derived dynamics model, we use a dataset of state-control trajectories to train a translation-equivariant nonlinear Hamiltonian model represented as a neural ordinary differential equation (ODE) network. The learned Hamiltonian model is used to synthesize an energy-shaping passivity-based controller and derive conditions which guarantee safe regulation to a desired reference pose. Finally, we enable adaptive tracking of a desired path, subject to safety constraints obtained from obstacle distance measurements. The trade-off between the system's energy level and the distance to safety constraint violation is used to adaptively govern the reference pose along the desired path. Our safe adaptive controller is demonstrated on a simulated hexarotor robot navigating in unknown complex environments.


翻译:未知环境中的安全自主导航是地面、空中和水下机器人的一个重要问题。 本文提出从轨迹数据中学习移动机器人动态模型的技术, 并将跟踪控制器与安全和稳定保证结合起来。 移动机器人的状态通常包含其位置、 方向和通用速度, 并满足汉密尔顿运动方程式。 我们使用一套来自手动的动态模型, 使用一套州控轨道数据集来训练一个翻译- 等同非线性汉密尔顿模型, 作为神经普通差分方程( ODE) 网络 。 所学的汉密尔顿模型用来合成一个基于能量的被动控制器, 并创造一些条件, 保证安全地调节所需的参考方形。 最后, 我们允许根据障碍距离测量获得的安全限制, 以适应性的方式跟踪一条理想的道路。 系统能源水平和安全约束距离之间的权衡, 用于适应性地管理所要沿路径的参考。 我们的安全适应性控制器在未知复杂环境中的模拟六价机器人导航。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【图与几何深度学习】Graph and geometric deep learning,49页ppt
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
VIP会员
相关VIP内容
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员