The evolution of wireless communications has been significantly influenced by remarkable advancements in multiple access (MA) technologies over the past five decades, shaping the landscape of modern connectivity. Within this context, a comprehensive tutorial review is presented, focusing on representative MA techniques developed over the past 50 years. The following areas are explored: i) The foundational principles and information-theoretic capacity limits of power-domain non-orthogonal multiple access (NOMA) are characterized, along with its extension to multiple-input multiple-output (MIMO)-NOMA. ii) Several MA transmission schemes exploiting the spatial domain are investigated, encompassing both conventional space-division multiple access (SDMA)/MIMO-NOMA systems and near-field MA systems utilizing spherical-wave propagation models. iii) The application of NOMA to integrated sensing and communications (ISAC) systems is studied. This includes an introduction to typical NOMA-based downlink/uplink ISAC frameworks, followed by an evaluation of their performance limits using a mutual information (MI)-based analytical framework. iv) Major issues and research opportunities associated with the integration of MA with other emerging technologies are identified to facilitate MA in next-generation networks, i.e., next-generation multiple access (NGMA). Throughout the paper, promising directions are highlighted to inspire future research endeavors in the realm of MA and NGMA.
翻译:暂无翻译