This paper proposes empirical Bayes shrinkage methods. Compared to common shrinkage methods, we do not assume that the unknown parameters are independent from the known standard errors. This prior independence assumption is both theoretically tenuous and often empirically rejected. We instead model the conditional distribution of the parameter given the standard errors as a location-scale family. This assumption leads to a family of methods that we call CLOSE. We establish that (i) CLOSE is rate-optimal for squared error Bayes regret up to logarithmic factors, (ii) squared error regret control is sufficient for a class of economic decision problems, and (iii) CLOSE is worst-case robust. We illustrate our method with an empirical application to the Opportunity Atlas and Creating Moves to Opportunity (Chetty et al., 2018; Bergman et al., 2019). For the decision problem of selecting high mobility Census tracts in Bergman et al. (2019), CLOSE selects Census tracts that are more economically mobile than the standard shrinkage method. This estimated gain is larger than the gain of using the standard method relative to selecting tracts uniformly at random.


翻译:本文提出了实验性贝叶缩水方法。 与常见的缩水方法相比, 我们不认为未知参数独立于已知的标准错误。 这一先前的独立假设在理论上是薄弱的, 通常在经验上是否定的。 我们用标准差来模拟参数的有条件分布, 并将其作为一个位置尺度的家庭。 这个假设导致我们称之为 CLOSE 的方法的组合。 我们确定 (i) COLOSE 是平方差错的最好率- 最佳方法 。 Bayes 遗憾到对数因素, (ii) 平方误差控制足以解决某一类经济决策问题, (iii) CLOSE 情况最差。 我们用“ 机会图集” 和“ 创造机会到机会” 的经验应用来说明我们的方法( Chetty 等人, 2018年; Bergman 等人, 2019年)。 对于选择Bergman 等人的高流动性普查道的决定问题, CLOSE 选择比标准缩水法更具有经济流动性的普查道。 这一估计的得大于使用标准方法来随机选择的得。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员