This paper presents a unified computational framework for the estimation of distances, geodesics and barycenters of merge trees. We extend recent work on the edit distance [106] and introduce a new metric, called the Wasserstein distance between merge trees, which is purposely designed to enable efficient computations of geodesics and barycenters. Specifically, our new distance is strictly equivalent to the L2-Wasserstein distance between extremum persistence diagrams, but it is restricted to a smaller solution space, namely, the space of rooted partial isomorphisms between branch decomposition trees. This enables a simple extension of existing optimization frameworks [112] for geodesics and barycenters from persistence diagrams to merge trees. We introduce a task-based algorithm which can be generically applied to distance, geodesic, barycenter or cluster computation. The task-based nature of our approach enables further accelerations with shared-memory parallelism. Extensive experiments on public ensembles and SciVis contest benchmarks demonstrate the efficiency of our approach -- with barycenter computations in the orders of minutes for the largest examples -- as well as its qualitative ability to generate representative barycenter merge trees, visually summarizing the features of interest found in the ensemble. We show the utility of our contributions with dedicated visualization applications: feature tracking, temporal reduction and ensemble clustering. We provide a lightweight C++ implementation that can be used to reproduce our results.
翻译:本文为估算合并树的距离、大地学和岩质中心提供了一个统一的计算框架。 我们扩展了最近关于编辑距离[106]的工作,并引入了一个新的指标,称为合并树之间的瓦瑟斯坦距离,其目的是为了能够有效地计算大地学和岩质中心。 具体地说, 我们的新距离严格相当于外红膜持久性图之间的L2- 瓦瑟斯坦距离, 但它仅限于一个较小的解决方案空间, 即树枝分分分分解树之间根深蒂固的局部异形学空间。 这样可以简单扩展现有的大地学和酒吧中心从持久性图到合并树的优化框架[112]。 我们采用了一种基于任务的算法, 以便可以通用地计算大地学和岩质中心或集束计算。 我们的方法基于任务的性质可以使共同的平行关系进一步加速。 公共团团和思维利竞争基准展示了我们方法的效率 -- 以透明中心计算方式计算地球学和酒量中心从持久性图图图到合并树组的现有优化框架[1122]。 我们采用的一种基于任务的算算法方法, 展示了我们用来减少尾浆的图像数据, 以及我们所找到的直观性树的精度数据库应用的精度特性。