As the global population continues to face significant negative impact by the on-going COVID-19 pandemic, there has been an increasing usage of point-of-care ultrasound (POCUS) imaging as a low-cost and effective imaging modality of choice in the COVID-19 clinical workflow. A major barrier with widespread adoption of POCUS in the COVID-19 clinical workflow is the scarcity of expert clinicians that can interpret POCUS examinations, leading to considerable interest in deep learning-driven clinical decision support systems to tackle this challenge. A major challenge to building deep neural networks for COVID-19 screening using POCUS is the heterogeneity in the types of probes used to capture ultrasound images (e.g., convex vs. linear probes), which can lead to very different visual appearances. In this study, we explore the impact of leveraging extended linear-convex ultrasound augmentation learning on producing enhanced deep neural networks for COVID-19 assessment, where we conduct data augmentation on convex probe data alongside linear probe data that have been transformed to better resemble convex probe data. Experimental results using an efficient deep columnar anti-aliased convolutional neural network designed via a machined-driven design exploration strategy (which we name COVID-Net US-X) show that the proposed extended linear-convex ultrasound augmentation learning significantly increases performance, with a gain of 5.1% in test accuracy and 13.6% in AUC.


翻译:由于全球人口继续面临正在发生的COVID-19大流行病的巨大负面影响,在COVID-19临床工作流程中越来越多地使用护理点超声波成像作为低成本和有效的成像选择模式。COVID-19临床工作流程中广泛采用POCUS的一个主要障碍是缺乏能够解释POCUS检查的专家临床医生,导致对深入学习驱动临床决策支持系统兴趣很大,以迎接这一挑战。 利用POCUS进行COVID-19评估的深层神经驱动临床决策支持系统,建设用于COVID-19检测的深层神经网络所面临的一项重大挑战是,在用来采集超声波图像的探头类型(例如,Convex对线性成像Conex探测数据那样的种类中的异异异性性性性(例如,Convex对线性探测器),这可能导致非常不同的视觉外观外观。在这项研究中,我们探讨利用扩展的线-convex超声波超声超声超声超声超声超声超声波学习,为COVID-19评估制作强化的深神经网络带来的影响,我们在直角探测数据与直线式探测数据上的数据进行数据增加,而已更接近C-C-C-C-Nex勘探测数据,从而更像-DVDRVI-DVI-DVAL探测数据,在通过VD-C-C-VD-C-VDVVD-C-C-C-VDVDVDVDVDVI设计一个高效的极直径网络上显示的测试网络战略中,通过一个高效的实验性研究数据库显示式的扩展的实验性能设计了。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员