Sparse subspace clustering methods with sparsity induced by $\ell^{0}$-norm, such as $\ell^{0}$-Sparse Subspace Clustering ($\ell^{0}$-SSC)~\citep{YangFJYH16-L0SSC-ijcv}, are demonstrated to be more effective than its $\ell^{1}$ counterpart such as Sparse Subspace Clustering (SSC)~\citep{ElhamifarV13}. However, the theoretical analysis of $\ell^{0}$-SSC is restricted to clean data that lie exactly in subspaces. Real data often suffer from noise and they may lie close to subspaces. In this paper, we show that an optimal solution to the optimization problem of noisy $\ell^{0}$-SSC achieves subspace detection property (SDP), a key element with which data from different subspaces are separated, under deterministic and semi-random model. Our results provide theoretical guarantee on the correctness of noisy $\ell^{0}$-SSC in terms of SDP on noisy data for the first time, which reveals the advantage of noisy $\ell^{0}$-SSC in terms of much less restrictive condition on subspace affinity. In order to improve the efficiency of noisy $\ell^{0}$-SSC, we propose Noisy-DR-$\ell^{0}$-SSC which provably recovers the subspaces on dimensionality reduced data. Noisy-DR-$\ell^{0}$-SSC first projects the data onto a lower dimensional space by random projection, then performs noisy $\ell^{0}$-SSC on the projected data for improved efficiency. Experimental results demonstrate the effectiveness of Noisy-DR-$\ell^{0}$-SSC.


翻译:由 $@%0} 美元- 诺尔姆( 美元- 美元- 美元) 引致的 sparse 亚空间群集方法, 如 $\ ell_0} 美元- 美元- 空间子群集( ell_ 0} 美元- 美元- 空间子群集( ell_ 0} 美元- 美元- 空间子群集( ell_ 0美元- 美元- SSC) 的理论分析, 证明比 $\ ell_ 美元- 美元- 美元- 诺尔- 空间群集( 美元- 美元- 美元- 美元- 诺尔- 美元- 诺尔- 空间群集( 美元- 美元- 美元- 美元- 美元- 诺尔- 美元- 美元- 空间群集( 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元的理论分析) 分析, 真实数据往往因噪音- 数据效率( 美元- 美元- room- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 美元- 流流流化) 流流化) 流化) 流流化) 数据效率的优化- 数据效率的优化- 降低而降低。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月10日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员