Physics-informed neural networks (PINNs) have become a popular choice for solving high-dimensional partial differential equations (PDEs) due to their excellent approximation power and generalization ability. Recently, Extended PINNs (XPINNs) based on domain decomposition methods have attracted considerable attention due to their effectiveness in modeling multiscale and multiphysics problems and their parallelization. However, theoretical understanding on their convergence and generalization properties remains unexplored. In this study, we take an initial step towards understanding how and when XPINNs outperform PINNs. Specifically, for general multi-layer PINNs and XPINNs, we first provide a prior generalization bound via the complexity of the target functions in the PDE problem, and a posterior generalization bound via the posterior matrix norms of the networks after optimization. Moreover, based on our bounds, we analyze the conditions under which XPINNs improve generalization. Concretely, our theory shows that the key building block of XPINN, namely the domain decomposition, introduces a tradeoff for generalization. On the one hand, XPINNs decompose the complex PDE solution into several simple parts, which decreases the complexity needed to learn each part and boosts generalization. On the other hand, decomposition leads to less training data being available in each subdomain, and hence such model is typically prone to overfitting and may become less generalizable. Empirically, we choose five PDEs to show when XPINNs perform better than, similar to, or worse than PINNs, hence demonstrating and justifying our new theory.


翻译:物理知情神经网络(PINNs)因其极好的近似功率和一般化能力而成为解决高维部分偏差方程式(PDEs)的流行选择。最近,基于域分解方法的扩展 PINNs(XPINNs)因其在模拟多规模和多物理问题及其平行化方面的功效而引起相当的关注。然而,关于这些网络的趋同和一般化特性的理论理解仍未得到探讨。在本研究中,我们迈出了第一步,以了解 XPINNs如何和何时超越PINNs。具体地说,对于一般多层 PINNs和XPINNNSs来说,我们首先通过PDE问题目标功能的复杂程度来提供先前的概括化,而对于在优化后的网络的成形矩阵规范加以约束。此外,根据我们的界限,我们分析XPINNN的模型改进总体化的条件。具体地说,我们的理论表明,XPINNN(即域分解)的关键建筑块,在一般化方面显示一些贸易的走向一般化,因此一般的推算算算得更低。

1
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
7+阅读 · 2020年6月29日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
9+阅读 · 2020年2月15日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员