This paper introduces DGNet, a novel deep framework that exploits object gradient supervision for camouflaged object detection (COD). It decouples the task into two connected branches, i.e., a context and a texture encoder. The essential connection is the gradient-induced transition, representing a soft grouping between context and texture features. Benefiting from the simple but efficient framework, DGNet outperforms existing state-of-the-art COD models by a large margin. Notably, our efficient version, DGNet-S, runs in real-time (80 fps) and achieves comparable results to the cutting-edge model JCSOD-CVPR$_{21}$ with only 6.82% parameters. Application results also show that the proposed DGNet performs well in polyp segmentation, defect detection, and transparent object segmentation tasks. Codes will be made available at https://github.com/GewelsJI/DGNet.
翻译:本文介绍了DGNet, 这是一个利用物体梯度监督以探测伪装物体的新深层框架。 它将任务分为两个连接的分支, 即上下文和纹理编码器。 基本连接是梯度引发的过渡, 代表着上下文和纹理特征之间的软组合。 DGNet从简单但有效的框架中受益, 大大超越了现有最先进的COD模型。 值得注意的是, 我们高效的版本DGNet- S, 实时运行( 80英尺), 并且只达到6. 82%参数的尖端模型JCSOD- CVPR$21} 的类似结果。 应用结果还显示, 拟议的DGNet在聚段化、 缺陷检测 和透明的物体分割任务方面表现良好。 代码将在https://github.com/GewelsJI/DGNet上公布。