We present OSFormer, the first one-stage transformer framework for camouflaged instance segmentation (CIS). OSFormer is based on two key designs. First, we design a location-sensing transformer (LST) to obtain the location label and instance-aware parameters by introducing the location-guided queries and the blend-convolution feedforward network. Second, we develop a coarse-to-fine fusion (CFF) to merge diverse context information from the LST encoder and CNN backbone. Coupling these two components enables OSFormer to efficiently blend local features and long-range context dependencies for predicting camouflaged instances. Compared with two-stage frameworks, our OSFormer reaches 41% AP and achieves good convergence efficiency without requiring enormous training data, i.e., only 3,040 samples under 60 epochs. Code link: https://github.com/PJLallen/OSFormer.
翻译:OSFormer(OSFormer)是第一个用于伪装实例分割(CIS)的单级变压器框架。 OSFormer(OOSFormer)基于两个关键设计。 首先,我们设计了定位-遥感变压器(LST),通过引入定位引导查询和混合进化反馈网络获得位置标签和试测参数。 其次,我们开发了一个粗到松的聚合(CFF),以合并来自LST编码器和CNN主干网的不同背景信息。 结合这两个组件,使OSFormer能够有效地将本地特征和长距离环境依赖结合起来,以预测伪装的事例。与两阶段框架相比,我们的OSFormer(LST)达到41%的AP,并在不需要大量培训数据的情况下实现良好的融合效率,即,在60粒子下只有3 040个样本。 代码链接: https://github.com/PJLallen/OSFormer。