Glioma is a common malignant brain tumor with distinct survival among patients. The isocitrate dehydrogenase (IDH) gene mutation provides critical diagnostic and prognostic value for glioma. It is of crucial significance to non-invasively predict IDH mutation based on pre-treatment MRI. Machine learning/deep learning models show reasonable performance in predicting IDH mutation using MRI. However, most models neglect the systematic brain alterations caused by tumor invasion, where widespread infiltration along white matter tracts is a hallmark of glioma. Structural brain network provides an effective tool to characterize brain organisation, which could be captured by the graph neural networks (GNN) to more accurately predict IDH mutation. Here we propose a method to predict IDH mutation using GNN, based on the structural brain network of patients. Specifically, we firstly construct a network template of healthy subjects, consisting of atlases of edges (white matter tracts) and nodes (cortical/subcortical brain regions) to provide regions of interest (ROIs). Next, we employ autoencoders to extract the latent multi-modal MRI features from the ROIs of edges and nodes in patients, to train a GNN architecture for predicting IDH mutation. The results show that the proposed method outperforms the baseline models using the 3D-CNN and 3D-DenseNet. In addition, model interpretation suggests its ability to identify the tracts infiltrated by tumor, corresponding to clinical prior knowledge. In conclusion, integrating brain networks with GNN offers a new avenue to study brain lesions using computational neuroscience and computer vision approaches.
翻译:Glioma 是常见的恶性脑肿瘤, 病人有明显的存活能力。 突变是神经脱氢酶( IDH) 基因突变的临界诊断和预知价值。 它对于非侵入地预测基于预处理MRI的 IDH突变具有至关重要的意义。 机器学习/ 深学习模型显示在使用 MRI 预测 IDH突变方面表现合理。 然而, 大多数模型忽视了肿瘤入侵造成的大脑系统改变, 白物质片上的广泛渗透是显微镜的标志。 结构大脑网络为大脑组织定性提供了有效的工具, 由图形神经神经网络( GNNN) 网络( GNN) 来更准确地预测 IDH 突变。 我们在这里提议了一种方法, 利用病人结构脑网络网络网络结构网络来预测 IDH突变。 具体地说, 我们首先建立一个健康主题的网络模板, 由边缘图示( 白物质片) 和结点( cortcalcalcalal/sucolateal le le legal legal legal ) 提供兴趣区域( ROICINS ) 。 我们用自动解解算算算算算算算算算出一个模型, 3 和模型的模型到模型的模型的模型的模型的模型的模型, 3- dirent- 和模型的模型的模型的模型 3- direntreal- dism- 。