Recent evidence has shown that structural magnetic resonance imaging (MRI) is an effective tool for Alzheimer's disease (AD) prediction and diagnosis. While traditional MRI-based diagnosis uses images acquired at a single time point, a longitudinal study is more sensitive and accurate in detecting early pathological changes of the AD. Two main difficulties arise in longitudinal MRI-based diagnosis: (1) the inconsistent longitudinal scans among subjects (i.e., different scanning time and different total number of scans); (2) the heterogeneous progressions of high-dimensional regions of interest (ROIs) in MRI. In this work, we propose a novel feature selection and estimation method which can be applied to extract features from the heterogeneous longitudinal MRI. A key ingredient of our method is the combination of smoothing splines and the $l_1$-penalty. We perform experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The results corroborate the advantages of the proposed method for AD prediction in longitudinal studies.
翻译:最近有证据表明,结构磁共振成像(MRI)是阿尔茨海默氏病(AD)预测和诊断的有效工具,传统的磁共振成像(MRI)利用一次性获得的图像进行诊断,而传统的磁共振诊断则使用在单一时间点上获得的图像,而在发现AD早期病理变化时,纵向研究则更为敏感和准确。 以纵向磁共振成像(MRI)进行诊断有两个主要困难:(1) 各学科之间纵向扫描不一致(即不同的扫描时间和不同的扫描总数);(2) 磁共振高维度区域(ROIs)的演进。 在这项工作中,我们提出了一种新的特征选择和估计方法,可以用来提取不同纵向MRI的特征。我们方法的一个关键要素是滑动螺丝和1美元-直角的组合。我们在阿尔茨海默氏疾病神经成像倡议数据库中进行实验。结果证实了在纵向研究中拟议的自动预测方法的优点。